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Abstract

The approximate solution of optimization and control problems for systems governed by the
Stokes equations is considered. Modern computational techniques for such problems are pre-
dominantly based on the application of the Lagrange multiplier rule, while penalty formulations,
even though widely used in other settings, have not enjoyed the same level of popularity for this
class of problems. A discussion is provided that explains why naively defined penalty meth-
ods may not be practical. Then, practical penalty methods are defined using methodologies
associated with modern least-squares finite element methods. The advantages, with respect to
efficiency, of penalty/least-squares methods for optimal control problems compared to methods
based on Lagrange multipliers are highlighted. A tracking problem for the Stokes system is used
for illustrative purposes.

1 Introduction

In many applications and for many years, optimization and control problems for systems governed
by partial differential equations (PDE’s) have been a subject of interest to experimentalists. For
example, the control of boundary layers in fluid flows was studied by Prandtl as early as 1904 [?].
These problems have also been a subject of theoretical interest and, for almost as long as computers
have been around, of computational interest as well. Most of the efforts in the latter directions
have employed elementary optimization strategies. For a historical perspective of such efforts in the
fluid mechanics setting, see [?]; experiences in other settings, e.g., electromagnetics, heat transfer,
structural mechanics, etc., are very similar.

More recently, mathematicians, scientists, and engineers have turned to the application of so-
phisticated optimization strategies, e.g., Lagrange multiplier methods, sensitivity or adjoint-based
gradient methods, quasi-Newton methods, evolutionary algorithms, etc., for solving optimization
and control problems for systems governed by PDE’s. On the mathematical side, one may credit
J.-L. Lions and D. Russell for helping popularize and foment these trends.

Several popular approaches to solving optimization and control problems constrained by PDE’s
are based, one way or another, on optimality systems deduced from the application of the Lagrange
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multiplier rule. This is not surprising since the Lagrange multiplier rule is a standard approach
to solving finite-dimensional optimization problems. What is perhaps surprising is that penalty
methods, another popular approach for the latter setting, have not engendered anywhere near as
much interest for the infinite-dimensional problems that are of interest here. The main advantage
of taking the penalty approach over Lagrange multiplier or sensitivity equations based methods
is that the former involves fewer unknowns. The main disadvantage of the penalty approach is
the relative poor conditioning of the linear algebraic systems that one must solve; this results in
inefficiencies in the application of iterative methods for the solution of the linear systems.

The poor conditioning problem arises from the need to choose small values for the penalty
parameter so that the error due to penalization does not dominate the discretization error. This
problem can be ameliorated by invoking an iterative penalty approach (see, e.g., [?, ?]) that, at the
price of having to solve multiple linear systems, can render the error due to penalization as small
as one wants even for relatively large values of the penalty parameter. However, one now is faced
with the possible inefficiency of having to solve more than one linear system, so that anything that
can be done to reduce the difficulty and cost of effecting that solution is crucial to the success of
the overall penalty-based optimization algorithm.

In this paper, we expand on these observations to show why naively defined penalty methods
may not be practical. We then show how, by incorporating modern least-squares finite element
methodologies, the penalty approach can be rehabilitated to yield practical and efficient algorithms
for optimal control problems. These algorithms, referred hereafter as penalty/least-squares methods,
use least-squares variational principles to treat the PDE constraints. This type of penalty methods
offers certain efficiency related advantages compared to methods based on the application of La-
grange multiplier techniques and the solution of the resulting optimality system by either Galerkin
or least-squares finite element methods.

Penalty/least-squares methods were pioneered by G. Fix, et al. [?] for an optimal shape design
problem. This was followed in [?, ?] with a study of penalty/least-squares methods for the Dirichlet
control of the Navier-Stokes system and, in [?], with like methods for optimal control problems
constrained by first-order elliptic systems. In [?], an alternate approach was developed wherein
least-squares principles are applied to the optimality system that results from the application of
the Lagrange multiplier rule.

The paper is organized as follows. In §??, we present mostly well-known results about gen-
eral constrained optimization problems and their solution via Lagrange multiplier and penalty
approaches. Then, in §§??–??, we apply the framework of §?? to optimization problems for the
Stokes equations. In particular, in §??, we consider a straightforward penalization approach and
show why the resulting method is not totally practical and, in §??, we develop a least-squares finite
element approach that realizes all the potential advantages of penalty-based formulations without
compromising efficiency. Finally, in §??, we consider some practical issues that arise in the efficient
implementation of the methodologies presented in §??. Although our discussion is in the context of
the Stokes equations, most of what we say applies to more general quadratic optimization problems
with linear, elliptic PDE constraints.

2 Constrained minimization problems in Hilbert spaces

Given Hilbert spaces V and S along with their dual spaces V ∗ and S∗, respectively, the symmetric
bilinear form a(·, ·) on V × V , the bilinear form b(·, ·) on V × S, the functions f ∈ V ∗ and g ∈ S∗,
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and the real number t, we define the functional

J (u) =
1

2
a(u, u) − 〈f, u〉V ∗,V + t ∀u ∈ V , (2.1)

the constraint equation
b(u, ξ) = 〈g, ξ〉S∗ ,S ∀ ξ ∈ S , (2.2)

where 〈·, ·〉 denotes the duality pairing, and the constrained minimization problem1

min
u∈V

J (u) subject to (??) . (2.3)

The bilinear forms serve to define associated operators

A : V → V ∗, B : V → S∗, and B∗ : S → V ∗ (2.4)

through the relations

a(u, v) = 〈Au, v〉V ∗,V ∀u, v ∈ V

b(v, ξ) = 〈Bv, ξ〉S∗,S = 〈B∗ξ, v〉V ∗,V ∀ v ∈ V, ξ ∈ S .

The minimization problem (??) can then be given the form

min
u∈V

J (u) subject to Bu = g ,

where the constraint equation Bu = g holds in S∗. We define the space

Z = {v ∈ V : b(v, ξ) = 0 ∀ ξ ∈ S} (2.5)

and make the following assumptions about the bilinear forms:





a(u, v) ≤ Ca‖u‖V ‖v‖V ∀u, v ∈ V

b(u, ξ) ≤ Cb‖u‖V ‖ξ‖S ∀u ∈ V, ξ ∈ S

a(u, u) ≥ 0 ∀u ∈ V

a(u, u) ≥ Ka‖u‖
2
V ∀u ∈ Z

sup
v∈V,v 6=0

b(v, ξ)

‖v‖V
≥ Kb‖ξ‖S ∀ ξ ∈ S ,

(2.6)

where Ca, Cb, Ka, and Kb are all positive constants.

2.1 Existence of solutions

The following result is well known; see, e.g. [?].

Proposition 2.1 Let the assumptions (??) hold. Then, the constrained minimization problem (??)
has a unique solution u ∈ V .

1The value of t does not affect the minimizer of J (·). We include it in the definition of J (u) only to facilitate the
identification of functionals to be encountered in later sections with the functional (??).
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2.2 Solution via Lagrange multipliers

For all v ∈ V and ξ ∈ S, we introduce the Lagrangian functional

L(v, ξ) = J (v) + b(v, ξ)−〈g, ξ〉S∗,S =
1

2
a(v, v) + b(v, ξ)−〈f, v〉V ∗,V −〈g, ξ〉S∗,S + t . (2.7)

Then, the constrained minimization problem (??) is equivalent to the unconstrained optimization
problem of finding saddle points (u, λ) in V × S of the Lagrangian functional. These saddle points
may be found by solving the optimality system

{
a(u, v) + b(v, λ) = 〈f, v〉V ∗,V ∀ v ∈ V

b(u, ξ) = 〈g, ξ〉S∗ ,S ∀ ξ ∈ S .
(2.8)

The following result is also well known; see, e.g., [?].

Proposition 2.2 Let the assumptions (??) hold. Then, the system (??) has a unique solution
(u, λ) ∈ V × S and moreover

‖u‖V + ‖λ‖S ≤ C
(
‖f‖V ∗ + ‖g‖S∗

)
.

In terms of the operators introduced in (??), the system (??) takes the form
{
Au+B∗λ = f in V ∗

Bu = g in S∗ .

2.2.1 Approximation of the Lagrange multiplier optimality system

We choose (conforming) finite dimensional subspaces V h ⊂ V and Sh ⊂ S, and then restrict (??)
to the subspaces, i.e., we seek uh ∈ V h and λh ∈ Sh that satisfy

{
a(uh, vh) + b(vh, λh) = 〈f, vh〉V ∗,V ∀ vh ∈ V h

b(uh, ξh) = 〈g, ξh〉S∗,S ∀ ξh ∈ Sh .
(2.9)

This is also the optimality system for the minimization of the functional J (·) over V h subject to
b(uh, ξh) = 〈g, ξh〉S∗,S for all ξh ∈ Sh. Let

Zh = {vh ∈ V h : b(vh, ξh) = 0 ∀ ξh ∈ Sh} .

In general, Zh 6⊂ Z even though V h ⊂ V and Sh ⊂ S so that the last two assumptions in (??) may
not be satisfied. If V h and Sh are such that they hold, then one obtains the following well-known
result; see, e.g., [?].

Proposition 2.3 Let the hypotheses of Proposition ?? hold and assume that

a(uh, uh) ≥ Kh
a ‖u

h‖2
V ∀uh ∈ Zh (2.10)

and2

sup
vh∈V h,vh 6=0

b(vh, ξh)

‖vh‖V
≥ Kh

b ‖ξ
h‖S ∀ ξh ∈ Sh , (2.11)

2The assumption (??) is commonly referred to as the (discrete) inf-sup condition owing to the equivalent form

inf
ξh∈Sh,ξh 6=0

sup
vh∈V h,vh 6=0

b(vh, ξh)

‖vh‖V ‖ξh‖S

≥ K
h
b .
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where Kh
a and Kh

b are positive constants whose values are independent of h. Then, the discrete
optimality system (??) has a unique solution (uh, λh) ∈ V h × Sh and moreover

‖uh‖V + ‖λh‖S ≤ C
(
‖f‖V ∗ + ‖g‖S∗

)
.

Furthermore, if (u, λ) ∈ V × S denotes the unique solution of (??), then

‖u− uh‖V + ‖λ− λh‖S ≤ C
(

inf
vh∈V h

‖u− vh‖V + inf
ξh∈Sh

‖λ− ξh‖S

)
. (2.12)

The discrete problem (??) is equivalent to a linear system. Indeed, let {Ui}
n
i=1 and {Λi}

m
i=1,

where n = dimV h, m = dimSh, denote bases for V h and Sh, respectively, and let ~u = (u1, . . . , un)T

and ~λ = (λ1, . . . , λm)T denote the coefficients in the expansion of uh and λh in terms of the bases.
Furthermore, let fi = 〈f, Ui〉V ∗,V for i = 1, . . . , n, gi = 〈g,Λi〉S∗,S for i = 1, . . . ,m, ~f = (f1, . . . , fn)T ,
and ~g = (g1, . . . , gm)T and define the elements of the n × n matrix A and the m× n matrix B by
Aij = a(Ui, Uj) for i, j = 1, . . . , n and Bij = b(Uj ,Λi) for i = 1, . . . ,m, j = 1, . . . , n, respectively.
Then, (??) is equivalent to the linear system

(
A BT

B 0

) (
~u
~λ

)
=

(
~f
~g

)
. (2.13)

Remark 2.4 The coefficient matrix in (??) is symmetric and indefinite. This is universal for
discretization of the saddle-point problems arising from the use of the Lagrange multiplier rule for
constrained optimization problems.

Remark 2.5 The assumptions (??) and (??) guarantee that the (m + n) × (m + n) coefficient
matrix in (??) is uniformly invertible with respect to h.

2.3 Solution via penalization

Let d(·, ·) denote a symmetric bilinear form on S × S satisfying the assumptions
{
d(λ, ξ) ≤ Cd‖λ‖S‖ξ‖S ∀λ, ξ ∈ S

d(λ, λ) ≥ Kd‖λ‖
2
S ∀λ ∈ S ,

(2.14)

where both Cd and Kd are positive constants. The bilinear form d(·, ·) serves to define an invertible
operator D : S → S∗ through

d(λ, ξ) = 〈Dλ, ξ〉S∗,S .

Proposition 2.6 Assume that (??) and (??) hold. Then,

a(v, v) +
〈
Bv,D−1Bv

〉
S∗,S

≥ K‖v‖2
V ∀ v ∈ V , (2.15)

where K = min{Ka,KdK
2
b /C

2
d}.

Proof: For all v ∈ Z⊥, we have from (??) and (??) that

a(v, v) +
〈
Bv,D−1Bv

〉
S∗,S

≥
〈
Bv,D−1Bv

〉
S∗,S

≥
Kd

C2
d

‖Bv‖2
S∗ ≥

KdK
2
b

C2
d

‖v‖2
V .

Furthermore, the assumptions on b(·, ·) contained in (??) imply that the subspace Z ⊂ V is closed
and that ‖Bv‖S∗ ≥ Kb‖v‖V for all v ∈ Z⊥; see, e.g., [?]. Then,

a(v, v) +
〈
Bv,D−1Bv

〉
S∗,S

= a(v, v) ≥ Ka‖v‖
2
V ∀ v ∈ Z .

5



Thus, (??) is proved. �

Let ǫ > 0 be a parameter that tends to zero and consider the penalized functional

Jǫ(v) = J (v) +
1

2ǫ

〈
Bv − g,D−1(Bv − g)

〉
S∗,S

=
1

2
a(u, u) − 〈f, u〉V ∗,V + t+

1

2ǫ

〈
Bv − g,D−1(Bv − g)

〉
S∗,S

(2.16)

that is defined for all v ∈ V . Then, consider the unconstrained minimization problem

min
u∈V

Jǫ(u) . (2.17)

For any fixed ǫ > 0, the minimizer uǫ can be found by solving the optimality equation

a(uǫ, v) +
1

ǫ

〈
Bv,D−1Buǫ

〉
S∗,S

= 〈f, v〉V ∗,V +
1

ǫ

〈
Bv,D−1g

〉
S∗,S

∀ v ∈ V . (2.18)

The following result follows easily from (??) and is well known; see, e.g., [?].

Proposition 2.7 Let the assumptions (??) and (??) hold. Then, for any fixed 0 < ǫ ≤ 1, there
exists a unique uǫ ∈ V satisfying (??).

In terms of the operators A, B, and D, (??) takes the form

Auǫ +
1

ǫ
B∗D−1Buǫ = f +

1

ǫ
B∗D−1g in V ∗ . (2.19)

For any fixed ǫ > 0 and for given uǫ ∈ V , define λǫ ∈ S through

ǫd(λǫ, ξ) = b(uǫ, ξ) − 〈g, ξ〉S∗,S ∀ ξ ∈ S . (2.20)

Again, the following result is well known; see, e.g., [?].

Proposition 2.8 Let the assumptions (??) and (??) hold. Then, for any fixed 0 < ǫ ≤ 1 and for
any given uǫ ∈ V , there exists a unique λǫ ∈ S satisfying (??).

In terms of the operators B andD, we have that ǫDλǫ = Buǫ−g in S∗ or λǫ = 1
ǫD

−1Buǫ−
1
ǫD

−1g
in S. We may then write (??) in the form

a(uǫ, v) + 〈Bv, λǫ〉S∗,S = 〈f, v〉V ∗,V ∀ v ∈ V . (2.21)

Consequently, (uǫ, λǫ) ∈ V × S is the unique solution of the regularized system

{
a(uǫ, v) + b(v, λǫ) = 〈f, v〉V ∗,V ∀ v ∈ V

b(uǫ, ξ) − ǫd(λǫ, ξ) = 〈g, ξ〉S∗,S ∀ ξ ∈ S
(2.22)

or, in terms of the operators A, B, and D,

{
Auǫ +B∗λǫ = f in V ∗

Buǫ − ǫDλǫ = g in S∗ .
(2.23)
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Remark 2.9 Problems (??) and (??) are completely equivalent. If (uǫ, λǫ) ∈ V × S solves (??),
then uǫ solves (??). On the other hand, if uǫ ∈ V is a solution of (??), then uǫ and λǫ ∈ S, where
the latter is the solution of (??), is a solution of (??). Alternately, we could have stated these
equivalences using (??) and (??). Thus, penalization of J (v) and regularization of the Lagrange
multiplier optimality system are equivalent. Note that (??) is the optimality system corresponding
to the regularized Lagrangian functional

Lǫ(v, ξ) =

(
1

2
a(v, v) + b(v, ξ) − 〈f, v〉V ∗,V − 〈g, ξ〉S∗,S + t

)
−
ǫ

2
d(ξ, ξ) = L(v, ξ) −

ǫ

2
d(ξ, ξ)

which may be viewed as a regularization of the functional (??).
Once again, the following result is well known; see, e.g., [?].

Proposition 2.10 Let the assumptions (??) and (??) hold. Let (u, λ) ∈ V × S denote the unique
solution of (??) or, equivalently, of the optimization problem (??), and, for each fixed 0 < ǫ ≤ 1,
let (uǫ, λǫ) ∈ V × S denote the unique solution of (??) or, equivalently, of (??) and (??). Then,

‖u− uǫ‖V + ‖λ− λǫ‖S ≤ ǫC
(
‖f‖V ∗ + ‖g‖S∗

)
(2.24)

so that uǫ → u and λǫ → λ as ǫ→ 0.

Remark 2.11 An iterative process may defined through which a sequence of solutions of penalty
systems can be sequentially determined and for which the differences between the members of the
sequence and the solution of the constrained minimization problem (??) are of O(ǫk), where k is
the index of the sequence. In this way, at the cost of an iteration, the penalty solutions can be
made as accurate as desired. See, e.g., [?, ?] for details.

2.3.1 Approximation of penalty solution

To approximate (uǫ, pǫ), we can start with either (??) or (??). Although these two problems are
equivalent, they do not engender the same discrete equations. This point will be clarified shortly.

Discretization of the optimality system. First, let us start with (??). We choose (conform-
ing) finite dimensional subspaces V h ⊂ V and Sh ⊂ S and pose (??) over the subspaces, i.e., we
seek (uh

ǫ , λ
h
ǫ ) ∈ V h × Sh that satisfies

{
a(uh

ǫ , v
h) + b(vh, λh

ǫ ) = 〈f, vh〉V ∗,V ∀ vh ∈ V h

b(uh
ǫ , ξ

h) − ǫd(λh
ǫ , ξ

h) = 〈g, ξh〉S∗,S ∀ ξh ∈ Sh .
(2.25)

The following result is well known; see, e.g., [?].

Proposition 2.12 Let the assumptions (??), (??), (??), and (??) hold. Then, for any fixed 0 <
ǫ ≤ 1, (??) has a unique solution (uh

ǫ , λ
h
ǫ ) ∈ V h × Sh and, moreover, that solution satisfies

‖uh − uh
ǫ ‖V + ‖λh − λh

ǫ ‖S ≤ ǫC
(
‖f‖V ∗ + ‖g‖S∗

)
, (2.26)

where {uh, λh} denotes the unique solution of (??). Combining with (??), we obtain

‖u− uh
ǫ ‖V + ‖λ− λh

ǫ ‖S ≤ C
(
ǫ
(
‖f‖V ∗ + ‖g‖S∗

)

+ inf
vh∈V h

‖u− vh‖V + inf
ξh∈Sh

‖λ− ξh‖S

)
,

(2.27)

where {u, λ} denotes the unique solution of (??) or, equivalently, of (??).

7



In addition to the matrices A and B previously introduced, we define the m×m matrix D by
Dij = d(Λi,Λj). Then, (??) is equivalent to the linear system

(
A BT

B −ǫD

)(
~uǫ

~λǫ

)
=

(
~f
~g

)
. (2.28)

It is now easy to see how one can eliminate λh from (??) or, equivalently, ~λ from (??). Assumptions
(??) imply that the matrix D is symmetric and positive definite, and therefore invertible. Then,
one easily deduces from (??) that ~uǫ solves

(
A +

1

ǫ
BT D−1B

)
~uǫ = ~f +

1

ǫ
BT D−1~g . (2.29)

Note that (??) only involves the approximation uh
ǫ ∈ V h of u ∈ V .

Proposition 2.13 Let the assumptions (??), (??), (??), and (??) hold. Then, for any fixed 0 <
ǫ ≤ 1, (??) has a unique solution ~uǫ.

Proof: The assumptions imply that A is symmetric and positive definite on the kernel of B, that B

is of full row-rank, and that D is positive definite. Thus, A + 1
ǫ BT D−1B is symmetric and positive

definite. �

Once ~uǫ is determined from (??), ~λǫ may be determined from

ǫD~λǫ = B~uǫ − ~g . (2.30)

Remark 2.14 The system (??) is a regular perturbation of (??). Thus, if the assumptions of
Proposition ?? hold, then, since the coefficient matrix in (??) is uniformly invertible (with respect
to h), so is the coefficient matrix in (??) (with respect to both h and ǫ.) On the other hand, if those
assumptions are not satisfied, and in particular if the condition (??) is not satisfied, then neither
of the systems (??) or (??) are stably invertible. Thus, there is no advantage to solving (??) as
opposed to (??). On the other hand, as we see in the next remark, there are advantages to solving
(??) instead of (??).

Remark 2.15 One obvious advantage of penalty methods over Lagrange multiplier methods for
problems such as (??) is that they involve less unknowns. Comparing (??) with (??), we see that
the addition of the penalty term allows for the elimination of ~λǫ to obtain (??). Thus, we may
solve for ~uǫ directly from (??) which involves less equations and unknowns than does (??), and
subsequently, if desired, solve for ~λǫ from (??). Furthermore, the coefficient matrix in the system
(??) is symmetric and positive definite (provided the assumptions of Proposition ?? are satisfied)
while the one for the system (??) is indefinite. On the other hand, for small values of ǫ, the
coefficient matrix in the penalized system (??) may be ill conditioned. Small values of ǫ need to
be employed in order to balance the errors arising from penalization, i.e., the terms involving ǫ in
(??), and the errors arising from approximation, i.e., the remaining terms in that estimate. By
using an iterative penalty approach (see Remark ??), the estimate (??) can be replaced by one that
involves terms proportional to ǫk (instead of ǫ), where k is the number of iterations applied. In this
manner, the two types of terms in the error estimate can be balanced even if ǫ is not so small so
that the conditioning of the matrix in (??) is compromised. Of course, one has to pay the price of
having to solve k linear systems. Note that all these systems involve the same coefficient matrix.
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Remark 2.16 At first glance it seems that (??) does not involve the space Sh; however, Sh does
enter into (??) through the definitions of the matrices B and D. If V h and Sh are chosen so that
(??), (??), (??), and, in particular, the discrete inf-sup condition (??) are satisfied, then we saw by
Propositions ?? and ?? that (??), or equivalently, (??), is uniquely solvable and the error estimates
(??) and (??) hold. If (??) is not satisfied, then, as noted above, (??) or (??) may not be stably
invertible. Because (??) is still required for these problems, one should view (??) or (??) as a
solution method for the discrete system (??). See Remark ??.

Discretization of the penalized problem. Instead of discretizing (??), we can instead dis-
cretize the penalized optimization problem (??). To this end, choose a conforming subspace Ṽ h ⊂ V
and consider the optimization problem

min
vh∈eV h

Jǫ(v
h) . (2.31)

It is easy to see that the problem (??) is equivalent to seeking ũh
ǫ ∈ Ṽ h such that

a(ũh
ǫ , v

h) +
1

ǫ

〈
Bvh,D−1Bũh

ǫ

〉
S∗,S

= 〈f, vh〉V ∗,V +
1

ǫ

〈
Bvh,D−1g

〉
S∗,S

(2.32)

for all vh ∈ Ṽ h. Obviously, (??) can be obtained by restricting (??) to the subspace Ṽ h ⊂ V . It is
also easily seen that (??) is equivalent to the linear system

(
Ã +

1

ǫ
B̃

)
ũǫ = f̃ +

1

ǫ
g̃ , (2.33)

where Ãij = a(Ui, Uj), B̃ij =
〈
BUi,D

−1BUj

〉
S∗,S

, f̃i = 〈f, Ui〉V ∗,V , and g̃i =
〈
BUi,D

−1g
〉
S∗,S

for
i, j = 1, . . . , n.

Proposition 2.17 Let the assumptions (??), (??), and (??) hold. Assume further that

a(vh, vh) +
〈
Bvh,D−1Bvh

〉
S∗,S

≥ Kh‖vh‖2
V ∀vh ∈ V h (2.34)

for some positive constant Kh. Then, for any fixed 0 < ǫ ≤ 1, the coefficient matrix in (??) is
positive definite as well as symmetric so that that equation has a unique solution ũǫ, or equivalently,
(??) has a unique solution ũh

ǫ .

Proof: Assumption (??) easily implies that, for 0 < ǫ ≤ 1, the coefficient matrix in (??) is positive
definite. �

Proposition 2.18 Let the assumptions (??), (??), (??), and (??) hold. Then, (??) holds with
Kh = min{Kh

a ,Kd(K
h
b )2/C2

d} so that, for any fixed 0 < ǫ ≤ 1, the matrix in (??) is symmetric and
positive definite and (??) has a unique solution ũǫ, or equivalently, (??) has a unique solution ũh

ǫ .

Proof: The proof follows the same lines as that for Proposition ??. �

Remark 2.19 Proposition ?? shows that the discrete penalty equation will have a unique solution
as long as one can verify the coercivity assumption (??). From Proposition ??, it is clear that
(??) is a sufficient condition for (??) to hold. It is also clear that (??) is not a necessary condition
for (??) and so the discrete penalty equation may have a unique solution even in cases when the
discrete inf-sup condition does not hold. However, (??) is necessary to prove that the discrete
penalty solution converges to the correct solution as ǫ→ 0; see Remarks ?? and ??.
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Remark 2.20 As it stands, (??) does not, in general define a practical method. The need to invert
the operator D in order to determine both B̃ and g̃ is usually not possible except in the case of
S = S∗ and D the identity operator. In other cases, one can replace B̃ and g̃ by

B̃h
ij =

(
Ui, Uj

)
∗,h

∀ i, j = 1, . . . , n and (g̃)hi =
〈
Ui, g

〉
∗,h

∀ i = 1, . . . , n ,

where (·, ·)∗,h and 〈·, ·〉∗,h are a mesh-dependent inner product and a mesh-dependent duality pairing
whose definitions require the definition of a discrete approximation to the operator D−1 and may
also require a discrete approximation to the operator B. We will return to this issue in §??. Note
that, on the other hand, (??) involves the inverse of the discrete operator D so that it can be
implemented for any bilinear form d(·, ·) that satisfies the assumptions (??).

Remark 2.21 The advantages of penalty methods over Lagrange multiplier methods for problems
such as (??) that are discussed in Remark ?? for the system (??) also apply to (??). Comparing
(??) with (??), the former involves less equations and unknowns and has a coefficient matrix that
is symmetric and positive definite.

Remark 2.22 Clearly, Ã + 1
ǫ B̃ 6= A + 1

ǫ BT D−1B and f̃ + 1
ǫ g̃ 6= ~f + 1

ǫ BT D−1~g so that (??) and (??)
are not the same even though the parent infinite-dimensional problems (??) and (??), respectively,
are equivalent. Note that (??) is obtained by first discretizing the infinite-dimensional regularized
optimality system (??) to obtain (??) and then eliminating the discrete Lagrange multiplier ~λǫ

from the latter. On the other hand, (??) can be viewed as being obtained by first eliminating the
Lagrange multiplier λǫ from (??) to obtain (??) and then discretizing the latter. Clearly, in general,
the two steps do not commute. Thus, discretizations of the regularized optimality system and the
penalized optimization problem do not yield the same approximations to the solution of (??)., i.e.,
in general, ũǫ 6= ~uǫ.

Remark 2.23 It is clear that (??) is defined without needing to choose a subspace S̃h ⊂ S. (This
should be contrasted with (??) for which the subspace Sh explicitly enters into the definition of
the matrices B and D.) Note, however, that in some sense we are implicitly defining a subspace
S̃h = D−1BṼ h ⊂ S for the Lagrange multiplier. This subspace, when paired with Ṽ h, may not
satisfy the discrete inf-sup condition (??) which shows that approximations obtained through (??)
with an arbitrary choice for Ṽ h may not yield stable approximations. See the next remark.

Remark 2.24 The locking effect, in the context of penalty methods, describes the phenomena in
which the finite element solution approaches zero as ǫ → 0. The locking effect is caused by the
overconstraining of the discrete solution. If b(·, ·), V h, and Sh satisfy the discrete inf-sup condition
(??), then the system (??), or equivalently (??), does not suffer from locking. However, the system
(??) can suffer locking with an improper choice for Ṽ h. For a discussion of the locking effect and
ways to ameliorate it, see, e.g., [?].

2.4 Examples

We now provide some very brief illustrations of constrained optimization problems of the type (??).
In the examples, Ω is an open, bounded domain in Rs, s = 2 or 3, with boundary Γ. We recall
the space L2(Ω) of all square integrable functions with norm ‖ · ‖, the space L2

0(Ω) ≡ {ξ ∈ L2(Ω) :∫
Ω ξdΩ = 0}, the space H1(Ω) ≡ {v ∈ L2(Ω) : ∇v ∈ [L2(Ω)]s}, and the space H1

0 (Ω) ≡ {v ∈

H1(Ω) : v = 0 on Γ}. A norm for functions v ∈ H1(Ω) is given by ‖v‖1 ≡ (‖∇v‖2 + ‖v‖2)1/2.
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2.4.1 The Stokes problem

Let V = [H1
0 (Ω)]s, S = L2

0(Ω), g = 0, t = 0,

a(u,v) =

∫

Ω
∇u : ∇v dΩ, and b(v, ξ) = −

∫

Ω
ξ∇ · v dΩ .

Then,

Z =
{
v ∈ [H1

0 (Ω)]s :

∫

Ω
ξ∇ · v dΩ = 0 ∀ ξ ∈ L2

0(Ω)
}

(2.35)

is the subspace of all divergence free functions in V . For this setting, all the assumptions in (??)
are satisfied. In fact, we have that

a(u,u) ≥ Ka‖u‖
2
1 ∀u ∈ [H1

0 (Ω)]s

and not just for the subspace Z. Thus, for any conforming choices of subspaces V h ⊂ [H1
0 (Ω)]s and

Sh ⊂ L2
0(Ω), the assumptions in (??) are all satisfied except for the inf-sup condition

inf
vh∈V h,vh 6=0

∫

Ω
ξh∇ · vh dΩ

‖vh‖1
≥ Ch

b ‖ξ
h‖0 ∀ ξh ∈ Sh . (2.36)

The inclusions V h ⊂ [H1
0 (Ω)]s and Sh ⊂ L2

0(Ω) are not sufficient for (??) to hold. Thus, stable
approximations of the Stokes problem require that the finite element spaces additionally satisfy
(??); see, e.g., [?, ?] for details.

The constrained minimization problem (??) is equivalent to the Stokes system for the velocity
u and the pressure λ:





−∆u + ∇λ = f in Ω

∇ · u = 0 in Ω

u = 0 on Γ

and

∫

Ω
λdΩ = 0 . (2.37)

With the choice

d(λ, ξ) =

∫

Ω
λξ dΩ (2.38)

(so that the operator D is the identity operator), the penalized optimization problem corresponding
to (??) obtained by the elimination of λ is given by





−∆uǫ −
1

ǫ
∇(∇ · uǫ) = f in Ω

uǫ = 0 on Γ .
(2.39)

Remark 2.25 To highlight the difference between (??) and (??), we note that in the current
context (??) involves the matrix A + 1

ǫ BT B, where

Aij =

∫

Ω
∇Ui : ∇Uj dΩ for i, j = 1, . . . , n

Bij =

∫

Ω
Λi∇ · Uj dΩ for i = 1, . . . ,m, j = 1, . . . , n ,
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and where {Ui}
n
i=1 and {Λi}

m
i=1 denote bases for V h and Sh, respectively. On the other hand, (??)

involves the matrix Ã + 1
ǫ B̃, where

Ãij =

∫

Ω
∇Ui : ∇Uj dΩ and B̃ij =

∫

Ω
(∇ ·Ui)(∇ · Uj) dΩ for i, j = 1, . . . , n .

Clearly, Ã + 1
ǫ B̃ 6= A + 1

ǫ BT B.

2.4.2 A curl-curl formulation of the Stokes problem

Let V = [H1
0 (Ω)]s, S = L2

0(Ω). We keep g = 0, t = 0, and b(·, ·) as defined in §?? but change a(·, ·)
to

a(u,v) =

∫

Ω
(∇× u) · (∇× v) dΩ .

Then, Z is given by (??) and it is not hard to see that

a(u,u) ≥ Ka‖u‖
2
1 ∀u ∈ Z

but that this inequality does not hold on all of V . In this case, we must verify that (??) is satisfied
on the approximating subspaces. The constrained minimization problem (??) is now equivalent to
the system 




∇×∇× u + ∇λ = f in Ω

∇ · u = 0 in Ω

u = 0 on Γ

and

∫

Ω
λdΩ = 0 . (2.40)

The corresponding penalized optimization problem, with the bilinear form d(·, ·) chosen as in (??),
is equivalent to 




∇×∇× u−
1

ǫ
∇(∇ · u) = f in Ω

u = 0 on Γ .

In this system, the term arising from the penalization is crucial to the coercivity of the operator on
the left-hand side, i.e., to the validity of (??), while for the penalized Stokes system (??) the first
term on the left-hand side by itself was sufficient to guarantee the validity of that result.

Remark 2.26 Note that g = 0 implies that ∇·u = 0 in Ω. Then, since −∆u = ∇×∇×u−∇(∇·u),
(??) is equivalent to the Stokes problem (??). This illustrates the point that different formulations
of the same problem may result in considerably different properties of the corresponding penalized
problems.

3 Quadratic optimization problems with Stokes equations con-

straints

We now apply the results of §?? to quadratic optimization problems constrained by the Stokes
system. We identify {u, p;θ} with the variable u of §??, where u denotes the velocity, p the
pressure, and θ the body force which acts as the control.

We consider the control problem consisting of minimizing the quadratic functional

J (u, p, θ) =
1

2

∫

Ω
|u− û|2 dΩ +

δ

2

∫

Ω
|θ|2 dΩ (3.1)
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subject to the Stokes system





−∆u + ∇p− θ = 0 in Ω

∇ · u = 0 in Ω

u = 0 on Γ

and

∫

Ω
p dΩ = 0 (3.2)

being satisfied, where δ > 0 is a given constant and û ∈ [L2(Ω)]s a given function. This optimal
control problem may be interpreted as follows: we are trying to find a velocity u and a control
function θ such that u matches as well as possible, in an L2(Ω) sense, a given velocity field û and
such that the Stokes system is satisfied. The matching is done by the first term in the functional;
the second term is used to limit the size of the control function θ. This optimization problem is
often referred to as the velocity tracking problem with distributed controls for the Stokes system.

Remark 3.1 Note that in §??, the pressure was denoted by λ while we now use p for that purpose.
This is done to achieve consistency with the notation of §?? where λ is used to denote the Lagrange
multiplier used to enforce the constraints in a constrained optimization problem. In §??, the
pressure acts as such a Lagrange multiplier, while in this section, it is a state variable. Its role as
an “inner” Lagrange multiplier is within the constraint equations (??), not in the “outer” sense of
the optimization problem at hand.

Let V = [H1
0 (Ω)]s × L2

0(Ω) × [L2(Ω)]s, V ∗ = [H−1(Ω)]s × L2
0(Ω) × [L2(Ω)]s,

a
(
{u, p;θ}, {v, q;σ}

)
=

∫

Ω
u · v dΩ + δ

∫

Ω
θ · σ dΩ ∀ {u, p;θ}, {v, q;σ} ∈ V × V , (3.3)

〈
{û, 0;0}, {v, q;σ}

〉

V ∗,V
=

∫

Ω
û · v dΩ ∀ {v, q;σ} ∈ V ,

and t =
∫
Ω |û|2 dΩ. Then, using the correspondences {u, p;θ} ↔ u and {û, 0;0} ↔ f , it is clear

that the functional (??) is of the form (??). Next, let Θ = [L2(Ω)]s, S = [H1
0 (Ω)]s × L2

0(Ω),
S∗ = [H−1(Ω)]s × L2

0(Ω), and consider the form

b1

(
{u, p}, {ξ, ν}

)
=

〈
−△u + ∇p, ξ

〉
H−1(Ω),H1

0
(Ω)

+

∫

Ω
ν∇ · u dΩ (3.4)

defined on S × S, the form

b2

(
{θ}, {ξ, ν}

)
= −

〈
θ, ξ

〉
H−1(Ω),H1

0
(Ω)

defined on Θ × S, and the form

b
(
{u, p;θ}, {ξ, ν}

)
= b1

(
{u, p}, {ξ, ν}

)
+ b2

(
{θ}, {ξ, ν}

)
(3.5)

defined for all {u, p;θ} ∈ V and {ξ, ν} ∈ S. Then, with the additional correspondences {ξ, ν} ↔ ξ
and {0, 0} ↔ g, the Stokes system (??) is equivalent to (??), i.e., to

b
(
{u, p;θ}, {ξ, ν}

)
= 0 ∀{ξ, ν} ∈ S = [H1

0 (Ω)]s × L2
0(Ω) . (3.6)

Thus, the problem of minimizing the functional (??) subject to (??) is equivalent to the problem
(??).
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Suppose for the moment that θ ∈ [L2(Ω)]s is given. Then, consider the following least-squares
functional for the Stokes system (??):

K({u, p;θ}) =
1

2

(
‖ −△u + ∇p− θ‖2

−1 + ‖∇ · u‖2
0

)
. (3.7)

The choice of norms in which to measure the residuals of the Stokes system, i.e., a negative norm
for the momentum equation and an L2 norm for the continuity equation, is dictated by the a priori
estimate

‖ −△u + ∇p‖−1 + ‖∇ · u‖0 ≥ C (‖u‖1 + ‖p‖0) (3.8)

that holds for all {u, p} ∈ [H1
0 (Ω)]s × L2

0(Ω) and for some constant C > 0; see [?]. This choice
makes the least-squares functional (??) norm-equivalent and is sufficient to guarantee that, for
every θ ∈ [L2(Ω)]s, the least-squares optimization problem

min
{v,q}∈[H1

0
(Ω)]s×L2

0
(Ω)

K({v, q;θ}) (3.9)

has a unique minimizer {u, p} out of [H1
0 (Ω)]s × L2

0(Ω); see [?, ?].

Remark 3.2 Using the least-squares minimization problem (??) as a basis for finding finite element
approximations of solutions of the Stokes problem offers the advantage of circumventing the need
to satisfy any inf-sup conditions that arise in mixed Galerkin-based discretizations. In addition,
the least-squares-based method results in symmetric, positive definite linear systems instead of the
indefinite linear systems that arise in mixed Galerkin-based methods.

We will consider two different ways of using the least-squares functional (??) for the solution
of the velocity tracking problem. First, in §??, the cost functional (??) is simply penalized by the
least-squares functional (??). Subsequently, approximate solutions can be determined from either
the discretized optimality system corresponding to the penalized functional (the eliminate and
then discretize approach discussed in Remark ??) or by eliminating the Lagrange multiplier in the
discretized optimality system corresponding to a regularized Lagrangian functional (the discretize
and then eliminate approach discussed in Remark ??). While it is true that one obtains symmetric,
positive definite systems through these approaches, we will see that one still needs to apply inf-sup
type conditions in order to guarantee the stability and convergence of the approximations of the
penalized optimization problem. Thus, one of the great advantages of least-squares finite element
methods for the Stokes problem is negated.

In §??, a second way is introduced for using the least-squares functional (??) for the solution
of the velocity tracking problem. Instead of using the least-squares functional to penalize the
functional, we will use them to replace the original PDE constraint by a least-squares formulation.
This will allow us from the very beginning to define a setting that is guaranteed to satisfy a discrete
inf-sup condition for any choice of conforming discrete subspaces so that elimination of the discrete
Lagrange multiplier will be guaranteed to give a symmetric and positive definite linear system that
is uniformly invertible with respect to both the grid size h and the penalty parameter ǫ.
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4 Direct penalization by the least-squares functional

We consider using the least-squares functional (??) to directly penalize the cost functional (??) of
the optimization problem. To this end, consider the penalized functional

Jǫ({u, p;θ}) = J ({u, p;θ}) +
1

2ǫ
K({u, p;θ})

=
1

2

∫

Ω
|u − û|2 dΩ +

δ

2

∫

Ω
|θ|2 dΩ +

1

2ǫ

(
‖ −△u + ∇p− θ‖2

−1 + ‖∇ · u‖2
0

)
.

(4.1)

The optimality system corresponding to the minimization of (??) is given by: seek {uǫ, pǫ,θǫ} in
V ≡ [H1

0 (Ω)]s × L2
0(Ω) × [L2(Ω)]s such that

∫

Ω
uǫ · v dΩ + δ

∫

Ω
θǫ · σ dΩ +

1

ǫ

∫

Ω
(∇ · uǫ) (∇ · v) dΩ

+
1

ǫ

(
−△uǫ + ∇pǫ − θǫ,−△v + ∇q − σ

)
−1

=

∫

Ω
û · v dΩ , ∀ {v, q;σ} ∈ V .

(4.2)

Using (??), one can show that the bilinear form in (??) is continuous and coercive on V × V so
the problem (??) has a unique solution. However, to demonstrate O(ǫ) convergence of this solution
to the exact solution of the velocity tracking problem, it is necessary to show that the associated
regularized Lagrange multiplier optimality system is well posed. For this purpose, we need to
identify a form d(·, ·) that would allow us to obtain (??) by eliminating a set of yet unknown
Lagrange multipliers. To this end, we note the well-known identity [?]:

‖v‖2
−1 ≡

∫

Ω
v · (−∆)−1v dΩ =

〈
v, (−∆)−1v

〉
H−1(Ω),H1

0
(Ω)

, (4.3)

where (∆)−1 : [H−1(Ω)]s → [H1
0 (Ω)]s denotes the inverse of the (vector) Laplace operator with

zero Dirichlet boundary conditions. Using (??) and the definition of the form a(·, ·) from (??) the
optimality system (??) can be expressed as

a
(
{uǫ, pǫ,θǫ}, {v, q,σ}

)
+

1

ǫ

∫

Ω
(∇ · v) (∇ · uǫ) dΩ

+
1

ǫ

〈
−△v + ∇q − σ , (−∆)−1(−△uǫ + ∇pǫ − θǫ)

〉

H−1(Ω),H1

0
(Ω)

=

∫

Ω
û · v dΩ

(4.4)

for all {v, q;σ} ∈ V . It is now clear that

λǫ =
1

ǫ
(−△)−1(−△uǫ + ∇pǫ − θǫ) and µǫ =

1

ǫ
∇ · uǫ (4.5)

are the “missing” Lagrange multipliers, and that (??) can be rewritten as

a
(
{uǫ, pǫ,θǫ}, {v, q,σ}

)
+ b

(
{v, q,σ}, {λǫ, µǫ}

)
=

∫

Ω
û · v dΩ ∀{v, q;σ} ∈ V , (4.6)

where b(·, ·) is the form defined in (??). Next, recall that the operator −∆ : [H1
0 (Ω)]s → [H−1(Ω)]s ≡

([H1
0 (Ω)]s)∗ can be defined through

〈
(−∆)u,v

〉
H−1(Ω),H1

0
(Ω)

=

∫

Ω
∇u : ∇v dΩ ∀u,v ∈ [H1

0 (Ω)]s . (4.7)
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Then, (??) can be recast as

ǫ

∫

Ω
(∇λǫ : ∇ξ + µǫ ν) dΩ = 〈−△uǫ + ∇pǫ − θǫ, ξ〉H−1(Ω),H1

0
(Ω) +

∫

Ω
ν∇ · uǫ dΩ (4.8)

for all {ξ, ν} ∈ [H1
0 (Ω)]s × L2

0(Ω). If we define the bilinear form

d({λ, µ}, {ξ, ν}) =

∫

Ω
(∇λ : ∇ξ + µ ν) dΩ ∀ {λ, µ}, {ξ, ν} ∈ [H1

0 (Ω)]s × L2
0(Ω) , (4.9)

then (??) can be rewritten as

b
(
{uǫ, pǫ,θǫ}, {ξ, ν}

)
− ǫd

(
{λǫ, µǫ}, {ξ, ν}

)
= 0 (4.10)

for all {ξ, ν} ∈ [H1
0 (Ω)]s × L2

0(Ω).
Using the correspondences {u, p;θ} ↔ u, {v, q;σ} ↔ v, {λ, µ} ↔ λ, {ξ, ν} ↔ ξ, {û, 0;0} ↔ f ,

and {0, 0} ↔ g along with the definitions V = [H1
0 (Ω)]s × L2

0(Ω) × [L2(Ω)]s and S = [H1
0 (Ω)]s ×

L2
0(Ω), it is clear that (??) and (??) are equivalent to (??). It is also easy to see, using the above

correspondences, that (??) is equivalent to (??). Thus, we are position to invoke the results of §??,
provided that we can verify the assumptions (??) and (??).

Proposition 4.1 The assumptions (??) are valid for the forms a(·, ·) and b(·, ·) defined in (??)
and (??), respectively, and the assumptions (??) are valid for the bilinear form d(·, ·) defined in
(??).

Proof: For the sake of brevity, we only demonstrate that a(·, ·) is coercive on the kernel space

Z =
{
{u, p;θ} ∈ [H1

0 (Ω)]s × L2
0(Ω) × [L2(Ω)]s :

b({u, p;θ}, {ξ, ν}) = 0 ∀ {ξ, ν} ∈ [H1
0 (Ω)]s × L2

0(Ω)
}

and that b(·, ·) satisfies the last condition in (??). The remaining assumptions in (??) can be easily
verified and, obviously, the assumptions (??) are satisfied with Cd = Kd = 1.

Note that {u, p;θ} ∈ Z if and only if the pair {u, p} solves the Stokes system (??). Therefore,
from (??), we obtain that

‖u‖1 + ‖p‖0 ≤ C‖θ‖−1 ∀ {u, p;θ} ∈ Z .

From the definition of a(·, ·), and the fact that ‖θ‖−1 ≤ ‖θ‖0, it follows that

a({u, p;θ}, {u, p;θ}) = ‖u‖2
0 + δ‖θ‖2

0 ≥ δ‖θ‖2
0 ≥

δ

2
min(1, 1/C)

(
‖u‖2

1 + ‖p‖2
0 + ‖θ‖2

0

)

for all {u, p;θ} ∈ Z. To prove the last assumption in (??), let {ξ, ν} be an arbitrary pair in
[H1

0 (Ω)]s × L2
0(Ω) and consider the Stokes system





−∆u + ∇p = −△ξ in Ω

∇ · u = ν in Ω

u = 0 on Γ

and

∫

Ω
p dΩ = 0 .
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We recall (see [?, p.299]) that for every ξ ∈ [H1
0 (Ω)]s and ν ∈ L2

0(Ω), there exists a unique solution
{u, p} ∈ [H1

0 (Ω)]s × L2
0(Ω) of this system and, moreover,

‖u‖1 + ‖p‖0 ≤ C(‖ −△ξ‖−1 + ‖ν‖0) ≤ C
(
‖ξ‖1 + ‖ν‖0

)
,

where the last inequality follows from (??). Then,

b({u, p;θ}, {ξ, ν}) = ‖∇ξ‖2
0 + ‖ν‖2

0 ≥
1

2C

(
‖ξ‖1 + ‖ν‖0

)(
‖u‖1 + ‖p‖0

)

from which the last assumption in (??) easily follows. �

With this proposition we have verified all the hypotheses of Propositions ??, ??, and ?? and
thus we have the following result.

Theorem 4.2 The velocity tracking problem consisting of minimizing the functional (??) subject to
the Stokes system (??) and the penalized form of this problem consisting of minimizing the penalized
functional (??) both have unique solutions. Moreover, the solution of the latter problem, i.e., the
solution of (??) and (??), converges to the solution or the former problem with an error that is
O(ǫ).

4.1 Approximation of the penalized optimization problem

To approximate the penalty solution, we have the choice of discretizing either the penalized problem
(??) or the associated regularized optimality system (??) and (??). These approaches respectively
corresponds to the eliminate and then discretize and the discretize and then eliminate approaches
discussed in Remark ??.

If we choose to first discretize and then eliminate, it turns out that finite element spaces for the
velocity and the pressure cannot be chosen independently even though we have penalized the cost
functional by a well-posed least-squares formulation for the Stokes system for which such restrictions
do not exist! To see this, it suffices to inspect the definition of the discrete space Zh. Given finite
element subspaces W h, P h, and Θh of [H1

0 (Ω)]s, L2
0(Ω), and [L2(Ω)]s, respectively, it is not hard

to see that {uh, ph,θh} ∈ Zh if and only if

∫

Ω
∇uh · ∇vh dΩ −

∫

Ω
ph∇ · vh =

∫

Ω
θh · vh ∀λh ∈W h

−

∫

Ω
qh∇ · uh = 0 ∀qh ∈ P h .

(4.11)

This problem is a mixed Galerkin discretization of the Stokes system and as such it is subject to
the inf-sup condition [?, ?]. Therefore, we conclude that the proper definition of the discrete kernel
space Zh requires a stable pair of velocity and pressure subspaces. In particular, this excludes the
possibility of using equal order interpolation spaces defined with respect to the same triangulation
of the domain Ω into finite elements; see [?, ?].

With respect to the last assumption in (??), the inf-sup condition on the state variables is an
inner stability condition required to ensure well-posedness of the discrete constraint equation, i.e.,
the mixed Stokes problem (??). Without this condition, the outer inf-sup condition in (??) will
fail as well.

If we choose to first eliminate and then discretize, the finite element approximation of (??) is
easily defined by restricting this problem to a finite element subspace of V = [H1

0 (Ω)]s × L2
0(Ω) ×

[L2(Ω)]s. In the usual manner, one can show that the ensuing problem is a linear system whose
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solution defines a finite element approximation (uh
ǫ , p

h
ǫ ,θ

h
ǫ ) to the penalty solution. As stated

in Remark ??, this approach does not require an explicit choice of finite element subspaces for
the Lagrange multipliers, neither does it seem to require a special choice of velocity and pressure
subspaces. Indeed, since the bilinear form in (??) is coercive on V × V , it is easy to see that
all assumptions of Proposition ?? will hold for any conforming subspace V h of V and so the
discrete penalty problem will have a unique solution for any fixed value of the penalty parameter ǫ.
Nevertheless, stability and convergence of this method as ǫ→ 0 will depend on whether or not the
implicitly defined multiplier space satisfies a discrete inf-sup condition when paired with the spaces
used to discretize (??); see Remark ??. As a result, discretization of the penalty system (??) is not
guaranteed to work for all possible choices of conforming finite element subspaces, in particular,
the penalty finite element solution is not guaranteed to be free of locking as ǫ→ 0; see Remark ??.

To summarize, we have seen that the direct approach of penalizing an objective functional with
a well-posed least-squares functional for the constraint equations does not in general lead to a
computational method that takes advantage of some of the most desirable features of least-square
finite element methods. In particular, the need to have the discrete constraint system to be stably
solvable for the state variable for any choice of control variables can, e.g., for the Stokes system,
negate the advantages of least-square finite element methods in optimal control settings. In the next
section, we consider an alternate method that circumvents this problem and leads to formulations of
the velocity tracking problem that can be discretized using any choice of conforming finite element
subspaces for the state and control variables.

5 Constraining by the least-squares functional

In the last section, we saw that direct penalization of (??) by the least-squares functional (??) led to
a regularized Lagrange multiplier system that still required an internal inf-sup stability condition.
This, of course, is caused by the fact that re-introducing the Lagrange multipliers (??) back into
(??) recovers the mixed form of the Stokes system, which, as we know from §??, is a saddle-point
problem in its own right.

One of the chief reasons for the widespread use of least-squares principles has been their ability
to circumvent saddle-point stability conditions; see [?]. Since the main disadvantage of direct least-
squares penalization is the reappearance of the mixed form of the constraint equation, it is natural
to seek a solution of this problem by replacing the original constraint equation (??) by an equivalent
least-squares formulation so that the new bilinear form b1(·, ·) appearing in the constraint equation
is symmetric and coercive. Then, the solution of the optimization problem will not require any
internal discrete stability conditions

In sum, we propose to use the least-squares functional K(u, p;θ), defined in (??), to constrain
rather than to penalize the functional (??). Thus, least-squares-constrained formulation of the
velocity tracking problem is given by the optimization problem

min
(u,θ)∈[H1

0
(Ω)]s×[L2(Ω)]s

J (u,θ) subject to min
(u,p)∈[H1

0
(Ω)]s×L2

0
(Ω)

K(u, p;θ) . (5.1)

Standard techniques from calculus of variations can be used to show that, for any given θ ∈ [L2(Ω)]s,
the minimizer (u, p) ∈ [H1

0 (Ω)]s × L2
0(Ω) of K(u, p;θ) solves the variational equation

(
−△u + ∇p,−△v + ∇q

)
−1

+

∫

Ω
∇ · u∇ · v dΩ =

(
θ,−△v + ∇q

)
−1

(5.2)

for all (v, q) ∈ [H1
0 (Ω)]s × L2

0(Ω). To cast the least-squares constraint equation (??) into the form
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of (??), let S = [H1
0 (Ω)]s ×L2

0(Ω), Θ = [L2(Ω)s], and V = S ×Θ. Then, consider the bilinear form

b1({u, p}, {v, q}) =
(
−△u + ∇p,−△v + ∇q

)
−1

+

∫

Ω
∇ · u∇ · v dΩ (5.3)

defined on S × S, the bilinear form

b2({θ} , {v, q}) = −
(
θ,−△v + ∇q

)
−1

defined on Θ × S, and the form

b({u, p,θ}, {v, q}) = b1({u, p}, {v, q}) + b2({θ} , {v, q})

defined on V × S. With the additional correspondence {0, 0} ↔ g, the least-squares Stokes con-
straint (??) is equivalent to (??), i.e., to

b({u, p,θ}, {v, q}) = 0 ∀{v, q} ∈ S = [H1
0 (Ω)]s × L2(Ω) .

The bilinear form b1(·, ·) serves to define a self-adjoint operator B1 : S → S∗. Using (??), one
can show that this form is continuous and coercive on S × S so that the operator B1 is invertible
with a bounded inverse.

Remark 5.1 It is instructive to compare the operator engendered by b1(·, ·) as defined in (??) and
used in used in §?? with that corresponding to (??). In the first case, b1(·, ·) gives rise to the Stokes
operator

B1 =




−△ ∇

∇· 0


 (5.4)

plus some suitable boundary conditions while in the second case, (??) can be used to show that
b1(·, ·) leads to the operator

B1 =




−△ + ∇∇· ∇

∇· ∇ · (−△)−1∇


 (5.5)

plus some suitable boundary conditions. Note that B1 as defined in (??) is merely the standard
symmetric but indefinite Stokes operator and the weak formulation involving the corresponding
bilinear form (??) is subject to an inf-sup condition on the velocity-pressure spaces. On the other
hand, B1 as defined in (??) is a symmetric and positive definite operator and the weak formulation
involving the corresponding bilinear form (??) does not require inf-sup conditions for stability. This
is the main difference between the two ways of using a least-squares functional for optimization
problems. Thus, in this sense, the least-squares constraint (??) can be viewed as a regularized form
of the original Stokes constraint (??).

For {u, p,θ} ∈ V = [H1
0 (Ω)]s×L2

0(Ω)× [L2(Ω)]s and {v, q} ∈ S = H1
0(Ω)×L2

0(Ω), we introduce
the Lagrangian functional

L({u, p,θ}, {v, q}) = J (u,θ) + b({u, p,θ}, {v, q})

=
1

2

∫

Ω
(u − û)2 dΩ +

δ

2

∫

Ω
|θ|2 dΩ +

(
−△u + ∇p− θ,−△v + ∇q

)

−1

+

∫

Ω

(
∇ · u

) (
∇ · v

)
dΩ .

(5.6)
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Then, the constrained optimization problem (??) is equivalent to the unconstrained optimization
problem of finding the saddle points ({u, p,θ}, {v, q}) of (??). The saddle points may be found by
solving the optimality system





∫

Ω
u · z dΩ +

∫

Ω
(∇ · v)(∇ · z) dΩ +

(
−△v + ∇q,−△z

)

−1
=

∫

Ω
û · z dΩ

(
−△v + ∇q,∇r

)
−1

= 0
∫

Ω
θ · σ dΩ −

(
−△v + ∇q,σ

)
−1

= 0

(
−△u + ∇p,−△w

)
−1

+

∫

Ω
(∇ · u)(∇ ·w) dΩ −

(
θ,−△w

)
−1

= 0

(
−△u + ∇p,∇s

)
−1

−
(
θ,∇s

)
−1

= 0

(5.7)

for all z ∈ [H1
0 (Ω)]s, r ∈ L2

0(Ω), σ ∈ [L2(Ω)]s, w ∈ [H1
0 (Ω)]s, and s ∈ L2

0(Ω).

Theorem 5.2 The system (??) has a unique solution.

Proof: Note that {u, p,θ} is in the kernel space Z if and only if, given a θ ∈ [L2(Ω)]s, the pair
{u, p} solves the least-squares variational equation (??). Because the form b1(·, ·) is continuous and
coercive, this equation has a unique solution and this solution depends continuously on the data.
Therefore, for any {u, p,θ} ∈ Z, it holds that

‖u‖1 + ‖p‖0 ≤ C‖θ‖−1.

Note that the form a(·, ·) is the same as in Theorem ?? and so its coercivity on Z follows in exactly
the same manner.

It now remains to verify that the last assumption in (??) holds for the form b(·, ·), i.e., that
there exists a constant Kb such that

sup
{u,p,θ}∈V

b
(
{u, p,θ}, {v, q}

)

‖{u, p,θ}‖V
≥ Kb‖{v, q}‖S .

Let {v, q} ∈ S be an arbitrary but fixed function and take {u, p,θ} ≡ {v, p,0}. Then,

b
(
{u, p,θ}, {v, q}

)
= b1

(
{v, q}, {v, q}

)
≥ C‖{v, q}‖2

S ,

where the last inequality follows from (??). This shows that the last assumption in (??) holds.
�

Finite element discretizations of (??) are defined in the usual manner. We choose conforming
subspaces W h ⊂ [H1

0 (Ω)]s, P h ⊂ L2(Ω), and Θh ⊂ [L2(Ω)]s and then seek {uh, ph,θh} ∈ W h ×
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P h × Θh that solves




∫

Ω
uh · zh dΩ +

(
−△vh + ∇qh,−△zh

)
−1

+

∫

Ω
(∇ · vh)(∇ · zh) dΩ =

∫
Ω ûh · zh dΩ

(
−△vh + ∇qh,∇rh

)
−1

= 0
∫

Ω
θ · σh dΩ −

(
−△vh + ∇qh,σh

)
−1

= 0

(
−△uh + ∇ph,−△wh

)
−1

+

∫

Ω
(∇ · uh)(∇ ·wh) dΩ −

(
θh,−△wh

)
−1

= 0

(
−△uh + ∇ph,∇sh

)
−1

−
(
fh,∇sh

)
−1

= 0

(5.8)
for all {zh, rh,σh} ∈W h × P h × Θh and {wh, sh} ∈W h × P h.

Theorem 5.3 The system (??) has a unique solution for any conforming choice of the finite ele-
ment spaces W h, P h, and Θh.

Proof: Since b1(·, ·) is coercive and continuous on [H1
0 (Ω)]s ×L2

0(Ω)]2 it will remain coercive for any
choice of conforming subspaces W h and P h and so the proof of the discrete inf-sup condition follows
in exactly the same way as in Theorem ??. To show that a(·, ·) as defined in (??) is coercive on
the discrete kernel space Zh, note that {uh, ph,θh} ∈ Zh if and only if {uh, ph} solves the problem

b1

(
{uh, ph}, {vh, qh}

)
+ b2

(
θh, {vh, qh}

)
∀{vh, qh} ∈W h × P h.

Clearly, this problem has a unique solution {uh, ph} ∈W h × P h and moreover,

‖uh‖1 + ‖ph‖0 ≤ C‖θh‖−1.

Now (??) easily follows by noting that

a
(
{uh, ph,θh}, {uh, ph,θh}

)
= ‖uh‖2

0 +
δ

2
‖θh‖2

0

and that ‖θh‖0 ≥ ‖θh‖−1. Thus, we have established that all assumptions of Proposition ?? hold
for any choice of conforming finite element subspaces of [H1

0 (Ω)]s, L2
0(Ω), and L2(Ω). �

Let ~φ, ~θ, and ~λ denote the coefficient vectors of the state variables {uh, ph}, the control θh, and
the adjoint variables {vh, qh}, respectively. The discretized optimality system (??) is equivalent to
the linear system 


M1 0 K

0 M2 QT

K Q 0







~φ

~θ

~λ


 =




~f

~0

~0


 . (5.9)

Here, M1 and M2 are matrices corresponding to the bilinear form a(·, ·) and the bases chosen for
the subspaces V h and Θh, respectively, K is the stiffness matrix corresponding to the bilinear form
b1(·, ·) for the basis chosen for the subspace V h × P h, and Q is the rectangular matrix generated
by the bilinear form b2(·, ·) with respect to the bases chosen for the subspaces V h × P h and Θh.
Theorem ?? implies that (??) is uniformly invertible for any choice for the finite element subspaces.
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Remark 5.4 Here we have chosen the same finite element subspaces W h × P h to approximate
both the state {u, p} and the adjoint {v, q} variables. If these variables are approximated using
two different subspaces of [H1

0 (Ω)]s × L2(Ω), then the two matrices K appearing in (??) are not
the same and in fact, they are the transpose of each other. Even though nothing prevents us from
using different subspaces, this would clearly complicate the exposition and so we will not pursue
this approach.

Of course, (??) is a formidable system to solve; it is at least twice the size of the least-squares
problem for the Stokes system K~φ + Q~θ = ~0, not counting the size of the control variable. To
reduce its size, we proceed to eliminate the adjoint variables from the discrete problem (??), i.e.,
we first discretize and then eliminate; see Remark ??. Elimination of the adjoint variables requires
a form d(·, ·) that satisfies assumptions (??). Here we will use the form defined in (??) and the
relaxed constraint equation

ǫd({uh
ǫ , p

h
ǫ }, {w

h, sh}) = b({uh
ǫ , p

h
ǫ ,θ

h
ǫ }, {w

h, sh})

=
(
−△uh

ǫ + ∇qh
ǫ − θh

ǫ ,−△wh + ∇sh
)

−1
+

∫

Ω
(∇ · uh

ǫ )(∇ · wh) dΩ

(5.10)

to effect the regularization. After the original constraint in (??) is replaced by (??), the linear
system (??) takes the form




M1 0 K

0 M2 QT

K Q −ǫD







~φǫ

~θǫ

~λǫ


 =




~f

~0

~0


 . (5.11)

Here D is a matrix corresponding to the form d(·, ·) and the bases chosen for the subspaces W h

and P h (recall that we restrict attention to approximation of the state and adjoint variables by the
same finite element spaces). It is easy to see that

D =




K2 0

0 M


 ,

where K2 and M are matrices corresponding to
∫

Ω
∇v : ∇w dΩ and

∫

Ω
qs dΩ

and the bases chosen for W h and P h, respectively. One can easily eliminate the discrete adjoint
vector ~λǫ from (??) to obtain




M1 +
1

ǫ
KD−1K

1

ǫ
KD−1Q

1

ǫ
QT D−1K M2 +

1

ǫ
QT D−1Q







~φǫ

~θǫ


 =




~f

~0


 . (5.12)

The coefficient matrix of this linear system is symmetric and positive definite. Note the appearance
of D−1 in the system (??). Formally, computation of D−1 requires a solution of a vector Poisson
equation to invert K2 and inversion of a consistent mass matrix. Even though K2

−1 can be computed
fairly quickly by multilevel methods, it turns out that it is possible to the improve efficiency of the
penalized formulation even more. We will consider this issue in the next section.
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6 Further practicality considerations

In this section, we briefly discuss important issues related to the implementation of least-squares
constrained methods. In particular, we use several popular techniques from least-squares finite
element methodologies to demonstrate the formulation of practical and efficient computational
algorithms based on the ideas from the last section.

6.1 Discrete norms

The choice of d(·, ·) is guided by the assumptions in (??) which require this form to be symmetric,
continuous and coercive, i.e., inner-product equivalent. These assumptions also guarantee that the
matrix D engendered by d(·, ·) is invertible for any conforming choice of finite element subspaces for
the adjoint variables. In the present context, inversion of D includes inversion of K2, i.e., a solution
of a discrete Poisson equation on the same mesh on which we discretize our primary problem. Thus,
it would be advantageous to find a cheaper alternative. Since the only relevant assumption on d(·, ·)
is its inner-product equivalence, it is clear that we can replace D by an arbitrary symmetric and
positive definite matrix as long as it remains spectrally equivalent to D. This idea has been widely
used in the least-squares community in the implementation of negative norm least-squares methods;
see [?, ?, ?], among others.

The computation of negative norms requires the inversion of the Laplace operator; see (??).
Because this operation is not practical, least-squares methods that require negative norms have
relied on computable discrete equivalents to replace the actual negative norm. It can be shown (see
[?]) that for finite element functions such an equivalence can be defined using the discrete minus
one inner product

(φ,ψ)h =
(
(Bh + h2I)φ,ψ

)
0
, (6.1)

where Bh is a preconditioner for the Laplace equation that is spectrally equivalent to K2
−1. Thus,

D−1 can be replaced by the matrix

C =




Bh + h2I 0

0 h−2I




In practice, Bh is often implemented by using several multigrid cycles which makes its computation
very efficient compared to the evaluation of K2

−1.
Of course, the negative norms and inner products in (??), (??), (??), and (??) also must

be replaced by computable equivalents before we can actually use the methods in computations.
Likewise, it is preferable to replace the Laplace operator −△ by a discrete equivalent △h so as to
allow the use of standard C0 finite element subspaces in the discrete problem. For instance, we can
define △h : [H−1(Ω)]s 7→W h by −△hu = vh if and only if

(
∇vh,∇zh

)
0

=
(
u, zh

)
0

∀zh ∈W h .

It can be shown (see [?]) that the use of △h does not lead to loss of accuracy in the discrete problem.
Thus, using (??) in lieu of the minus one inner product and △h in lieu of △ gives the computable
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alternative of (??):





∫

Ω
uh · zh dΩ +

(
−△hvh + ∇qh,−△hzh

)
h

+

∫

Ω
∇ · vh∇ · zh dΩ =

∫

Ω
ûh · zh dΩ

(
−△hvh + ∇qh,∇rh

)

h
= 0

∫

Ω
θ · σh dΩ −

(
−△hvh + ∇qh,σh

)
h

= 0

(
−△huh + ∇ph,−△wh

)
h

+

∫

Ω
∇ · uh∇ · wh dΩ −

(
θh,−△wh

)
h

= 0

(
−△huh + ∇ph,∇sh

)
h
−

(
θh,∇sh

)
h

= 0 .

(6.2)

The linear system obtained from (??) by using C to eliminate the adjoint variables is given by




M1 +
1

ǫ
KhC Kh 1

ǫ
KhC Q

1

ǫ
QT C Kh M2 +

1

ǫ
QT C Q







~φǫ

~θǫ


 =



~f

~0


 , (6.3)

where Kh is the analogue of K obtained with the discrete minus one inner product. All matrices
in (??) are computable and the system can be solved by, e.g., preconditioned conjugate gradient
methods so that (??), when coupled to an iterative penalty method, defines a truly practical
algorithm for the solution of the velocity tracking problem.

6.2 First-order formulations

In (??), we constrained the optimization problem by a least-squares functional based on the second-
order Stokes system. A popular and widely used practice in least-squares finite element methods is
to apply least-squares principles to equivalent first-order formulations of the PDE problem. This
reduces the continuity requirements on the finite element spaces, but also increases the number of
dependent variables. However, this reformulation may well be worth the effort, especially when the
optimization problem involves physically important variables such as vorticity or stress.

To illustrate this idea, consider the functional

J (u,θ) =
1

2

∫

Ω
|∇ × u|2 dΩ +

δ

2

∫

Ω
|θ|2 dΩ (6.4)

and the optimization problem
min

{v,θ}∈[H1

0
(Ω)]s×[L2]s(Ω)

J (v,θ)

subject to the Stokes system (??). This optimization problem calls for finding a distributed control
θ that minimizes the total flow vorticity.

Using the vorticity
ω = ∇× u

in (??) allows us to write that functional as

J (ω,θ) =
1

2

∫

Ω
|ω|2 dΩ +

δ

2

∫

Ω
|θ|2 dΩ . (6.5)
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We can also consider the vorticity as a new dependent variable in the Stokes system. Using the
well-known vector identity

−△u = ∇×∇× u −∇(∇ · u) ,

the Stokes system (??) can be expressed as

∇× ω + ∇p = θ in Ω

∇ · u = 0 in Ω

∇× u− ω = 0 in Ω

u = 0 on Γ .

(6.6)

The problem (??) is known as the velocity-vorticity-pressure formulation of the Stokes problem. In
[?], it was shown that a norm-equivalent functional for this system is given by

K(u,ω, p;θ) =
1

2

(
‖∇ × ω + ∇p− θ‖2

−1 + ‖∇ · u‖2
0 + ‖∇ × u− ω‖2

0

)
.

Now, the vorticity minimization problem can be restated as

min
(ω,θ)∈[L2(Ω)]s×[L2(Ω)]s

Jǫ(ω,θ) subject to min
(u,ω,p)∈[H1

0
(Ω)]s×[L2(Ω)]s×L2

0
(Ω)

K(u, ω p;θ) . (6.7)

One advantage of (??) is that its optimality system will involve at most first-order derivatives of the
dependent variables which makes it easier to discretize by standard C0 finite element subspaces.

References

[1] D. Bedivan and G. Fix, Least-squares methods for optimal shape design problems, Comput.
Math. Appl. 30, 1995, pp. 7-25.

[2] P. Bochev, Least-squares methods for optimal control, Nonlin. Anal. Theo. Meth. Appl. 30,
1997, pp. 1875–1885.

[3] P. Bochev, Negative norm least-squares methods for the velocity-vorticity-pressure Navier-
Stokes equations, Num. Meth. PDE’s 15, 1999, pp. 237–256.

[4] P. Bochev and D. Bedivan, Least-squares methods for Navier-Stokes boundary control
problems, Int. J. Comp. Fluid Dyn 9, 1997, pp. 43–58.

[5] P. Bochev and M. Gunzburger, Least-squares finite element methods for elliptic equations,
SIAM Rev. 40, 1998 pp. 789–837.

[6] P. Bochev and M. Gunzburger, Analysis of least-squares finite element methods for the
Stokes equations, Math. Comp. 63, 1994, pp. 479–506.

[7] D. Braess, Finite Elements, Cambridge, Cambridge, 1997.

[8] J. Bramble, R. Lazarov, and J. Pasciak, A least squares approach based on a discrete
minus one inner product for first order systems, Technical Report 94-32, Mathematical Science
Institute, Cornell University, Ithaca, 1994.

25



[9] J. Bramble and J. Pasciak, Least-squares methods for Stokes equations based on a discrete
minus one inner product, J. Comp. App. Math. 74, 1996, pp. 155–173.

[10] F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising
from Lagrange multipliers, RAIRO Anal. Numer. R2, 1974, pp. 129–151.

[11] V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations,
Springer, Berlin, 1986.

[12] M. Gunzburger, Perspectives in Flow Control and Optimization, SIAM, Philadelphia, 2002.

[13] M. Gunzburger, Finite Element Methods for Viscous Incompressible Flows, Academic,
Boston, 1989.

[14] M. Gunzburger and H.-C. Lee, Analysis and approximation of optimal control problems
for first-order elliptic systems in three dimensions, Appl. Math. Comp. 100, 1999, pp. 49–70.

[15] M. Gunzburger and H.-C. Lee, A penalty/least-squares method for optimal control prob-
lems for first-order elliptic systems, Appl. Math. Comp. 107, 2000, pp. 57–75.

[16] J. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer,
New York, 1971.

[17] H. Schlichting and K. Gersten, Boundary Layer Theory, Springer, Berlin, 2000.

26


